F – Zakládání staveb
1. Úvod ... 3
 1.1 Funkce .. 3
 1.2 Základní názvosloví ... 3
 1.3 Požadavky .. 4
 1.3.1 Statické požadavky 4
 1.3.2 Izolační požadavky 6
 1.3.3 Ekonomické požadavky 6
 1.4 Dělení základů .. 6
2. Základové konstrukce ... 7
 2.1 Plošné základy .. 7
 2.1.1 Navrhování plošných základů 7
 2.1.1.1 Šířka plošného základu 7
 2.1.1.2 Hloubka založení 8
 Základové pasy ... 9
 2.1.1.3 Pasy z prostého betonu 10
 2.1.1.4 Pasy železobetonové monolitické 10
 2.1.1.5 Prefabrikované pasy 10
 Základové patky .. 11
 2.1.2.1 Patky z prostého betonu 11
 2.1.2.2 Prefabrikované patky 12
 2.1.2.3 Patky železobetonové monolitické 12
 2.1.2.4 Základové prahy 13
 2.1.3 Základové rošty .. 13
 2.1.4 Tenké základové desky 13
 2.1.5 Základové desky .. 14
 2.1.5.1 Rovné desky .. 14
 2.1.5.2 Žebrové desky 14
 2.1.5.3 Hřibové desky 14
 2.1.5.4 Základové vany 14
 2.1.6 Detaily plošných základů 15
 2.1.6.1 Základ nad terénem – sokl 15
 2.1.6.2 Prostup základovým pasem 15
 2.1.6.3 Ostatní úpravy plošných základů 15
 2.2 Hlubinné základy ... 16
 2.2.1 Piloty ... 16
 2.2.1.1 Dle přenášení zatížení 16
 2.2.1.2 Podle spolupůsobení 16
 2.2.1.3 Podle velikosti 17
 2.2.1.4 Podle technologie a materiálu 17
 2.2.2 Studně a šachtové pilíře 20
 2.2.3 Kesony ... 20
 2.3 Zemní vruty .. 21
3. Zvýšování kvality podloží 21
4. Zdroje ... 22
 4.1 Použitá literatura ... 22
 4.2 WWW – výukové materiály 22
 4.3 Normy .. 22
1. Úvod

1.1 Funkce

Základní normy:

Základy přenášejí zatížení ze stavby do základové půdy.

1.2 Základní názvosloví

Základová půda
- část geologického prostředí, které spolupůsobí se stavební konstrukcí.

Plošný základ
- stavební prvek, který přenáší zatížení ze stavby do vodorovné základové spáry svojí plochou.

Pilota
- svislá základová konstrukce, která přenáší zatížení ze stavby do hlubších vrstev základové půdy.

Základová spára
- místo, kde se základová konstrukce stýká se základovou půdou.

Inženýrsko-geologický průzkum
- činnost, která poskytuje geologické a geotechnické podklady pro návrh založení stavby.
1.3 Požadavky

1.3.1 Statické požadavky

- řeším především:
 - únosnost základu a základové půdy (mezní namáhání zeminy – 1.M.S.);
 - sedání stavby (2.M.S.);
 - statické propojení horní a spodní stavby (nerovnorněmě sedání objektu);
 - založení v nezámrzné hloubce.

- Stavba se posuzuje podle geotechnických kategorií, které vycházejí z:

A. Náročnosti konstrukcí

Podle náročnosti konstrukcí (jejich založení) rozlišujeme konstrukce na:

- nenáročné - nejsou citlivé na rozdíly v nerovnoměrném sedání (rodinné domy, garáže, nízké obytné domy, nízké zemědělské a průmyslové stavby);
- náročné - ostatní konstrukce, především výškové a staticky neurčité stavební konstrukce.

B. Základových poměrů

Podle výsledků provedených geologických a hydrogeologických zkoušek rozzeznáváme základové poměry:

- jednoduché základové poměry:
 - základová půda se v rozsahu stavebního objektu podstatně nemění;
 - jednotlivé vrstvy mají přibližně stálo měří a jsou uloženy vodorovně nebo téměř vodorovně;
 - podzemní voda neovlivňuje uspořádání objektů a návrh jejich konstrukce.
- složité základové poměry:
 - základová půda se v rozsahu stavebního objektu místo od místa podstatně mění, nebo vrstvy mají proměnlivou nosnost, nebo jsou nepravidelně uložené;
 - podzemní voda neprůzřivě ovlivňuje návrh objektů.

Navrhování základů podle zásad geotechnických kategorií

- předběžný výpočet podle 1. geotechnické kategorie, definitivní výpočet podle základových poměrů.

<table>
<thead>
<tr>
<th>Jednoduché základové poměry</th>
<th>Složité základové poměry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nenáročné konstrukce</td>
<td>dle 1. geotechnické kategorie</td>
</tr>
<tr>
<td>Náročné konstrukce</td>
<td>dle 2. geotechnické kategorie</td>
</tr>
</tbody>
</table>

Výpočet podle 1. geotechnické kategorie:

- výpočtová únosnost základové půdy → tabulky ČSN 73 1000 (již neplatná);
- zatížení → provozní (charakteristická) hodnota zatížení v základní kombinaci.

Výpočet podle 2. geotechnické kategorie:

- výpočtová únosnost základové půdy → hodnoty získané ze statistických rozborů zkoušek (v rozsahu celé ČR, v rozsahu určité oblasti výstavby);
- zatížení → extrémní (návrhová) hodnota zatížení v nejnepříznivější základní nebo mimořádné kombinaci.

Výpočet podle 3. geotechnické kategorie:

- výpočtová únosnost základové půdy → podle výsledků zkoušek uskutečněných při průzkumu staveniště;
- zatížení → extrémní (návrhová) hodnota zatížení v nejnepříznivější základní nebo mimořádné kombinaci.
<table>
<thead>
<tr>
<th>Třída</th>
<th>Symbol</th>
<th>Tabulková výpočtová únosnost R_{dt} [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Měkká</td>
</tr>
<tr>
<td>F 1</td>
<td>MG</td>
<td>110</td>
</tr>
<tr>
<td>F 2</td>
<td>CG</td>
<td>100</td>
</tr>
<tr>
<td>F 3</td>
<td>MS</td>
<td>100</td>
</tr>
<tr>
<td>F 4</td>
<td>CS</td>
<td>80</td>
</tr>
<tr>
<td>F 5</td>
<td>ML; MI</td>
<td>70</td>
</tr>
<tr>
<td>F 6</td>
<td>CL; CI</td>
<td>50</td>
</tr>
<tr>
<td>F 7</td>
<td>MH; MV; ME</td>
<td>50</td>
</tr>
<tr>
<td>F 8</td>
<td>CH; CV; CE</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Třída</th>
<th>Symbol</th>
<th>Tabulková výpočtová únosnost R_{dt} [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>šířka základu b [m]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>S 1</td>
<td>SW</td>
<td>300</td>
</tr>
<tr>
<td>S 2</td>
<td>SP</td>
<td>250</td>
</tr>
<tr>
<td>S 3</td>
<td>S-F</td>
<td>225</td>
</tr>
<tr>
<td>S 4</td>
<td>SM</td>
<td>175</td>
</tr>
<tr>
<td>S 5</td>
<td>SC</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Třída</th>
<th>Symbol</th>
<th>Tabulková výpočtová únosnost R_{dt} [kPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>šířka základu b [m]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>G 1</td>
<td>GW</td>
<td>500</td>
</tr>
<tr>
<td>G 2</td>
<td>GP</td>
<td>400</td>
</tr>
<tr>
<td>G 3</td>
<td>G-F</td>
<td>300</td>
</tr>
<tr>
<td>G 4</td>
<td>GM</td>
<td>250</td>
</tr>
<tr>
<td>G 5</td>
<td>GC</td>
<td>150</td>
</tr>
</tbody>
</table>

Zatřídění skalních hornin podle pevnosti

<table>
<thead>
<tr>
<th>Třída</th>
<th>Pevnost MPa</th>
<th>Pevnost</th>
<th>střední hustota diskontinuit - vzdálenost [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>> 600</td>
</tr>
<tr>
<td>R 1</td>
<td>> 150</td>
<td>velmi vysoká</td>
<td>8</td>
</tr>
<tr>
<td>R 2</td>
<td>50 až 150</td>
<td>vysoká</td>
<td>4</td>
</tr>
<tr>
<td>R 3</td>
<td>15 až 50</td>
<td>střední</td>
<td>1,6</td>
</tr>
<tr>
<td>R 4</td>
<td>5 až 15</td>
<td>nízká</td>
<td>0,8</td>
</tr>
<tr>
<td>R 5</td>
<td>1,5 až 5</td>
<td>velmi nízká</td>
<td>0,6</td>
</tr>
<tr>
<td>R 6</td>
<td>0,5 až 1,5</td>
<td>extrémně nízká</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Tabulkové pevnosti zemí je možné upravit například v závislosti na větší hloubce založení, vzdálenosti podzemní vody, nebo únosnějších vrstvách pod základovou spárou.
1.3.2 Izolační požadavky
- způsob založení musí umožňovat aktivní ochranu proti zemní vodě (resp. agresivní zemní vodě) případně radonu;
- rovněž musí způsob založení řešit tepelně-technické požadavky (viz jednotlivá řešení plošných základů).

1.3.3 Ekonomické požadavky
Vliv na hospodárnost základové konstrukce má především:
- zatížení na základ od konstrukce objektu;
- únosnost základové půdy;
- stlačitelnost základové půdy;
- rovnoměrnost / nerovnoměrnost základových poměrů pod objektem;
- tuhost horní stavby objektu.

1.4 Dělení základů
- plošné základy:
 - základové patky;
 - základové pásy;
 - základové rošty;
 - základové desky;
 - tenké desky.
- Hlubinné základy:
 - pilotty;
 - malopůlměrové pilotty;
 - velkopůlměrové pilotty;
 - studně (pilíře);
 - kesony;
 - milánské stěny.
2. Základové konstrukce

2.1 Plošné základy

- přenášejí zatížení ze stavby na větší plochu únosné základové půdy;
- používají se, jestliže se základová půda s dostatečnou únosností nachází v malé hloubce (obvykle do 4 m) a nenachází-li se v této hloubce podzemní voda;
- mezi plošné základy patří pásy, patky, rošty a desky.

2.1.1 Navrhování plošných základů

2.1.1.1 Šířka plošného základu

A. Únosnost

- je určena především:
 - velikostí zatížení (maximálním zatížením);
 - únosností základové půdy (minimální únosnost).
- Minimální plocha plošného základu se pro I. mezní stav (únosnost zeminy) určí ze vztahu:

\[
σ = \frac{F}{A}
\]

kde: \(σ\) je únosnost zeminy, \(F\) je maximální zatížení a \(A\) je minimální efektivní plocha (vychází z polohy síly vůči těžišti základu, tvaru základu atd.).

B. Sedání stavby

- pro 1. geotechnickou kategorii se mezní stav přetvoření neposuzuje;
- pro 2. geotechnickou kategorii se pro výpočet sednutí používají tabulkové hodnoty směrných normových charakteristik přetvárných vlastností základové půdy;
- pro 3. geotechnickou kategorii se pro výpočet sednutí používají normové hodnoty přetvárných charakteristik zjištěné průzkumem.

<table>
<thead>
<tr>
<th>Druh stavby</th>
<th>Celkové průměrné sednutí (S_{\text{m,lim}}) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Budovy a konstrukce u nichž nevznikají vlivem nerovnoměrného sedání přídatná namáhání</td>
<td>120</td>
</tr>
<tr>
<td>2. Konstrukce</td>
<td></td>
</tr>
<tr>
<td>2.1 staticky určité</td>
<td>100</td>
</tr>
<tr>
<td>2.2 železobetonové staticky neurčité</td>
<td>60</td>
</tr>
<tr>
<td>2.3 ocelové staticky neurčité</td>
<td>80</td>
</tr>
<tr>
<td>3. Vícepodlažní skeletové budovy</td>
<td></td>
</tr>
<tr>
<td>3.1 železobetonové skeletony s výplňovým zdvitem</td>
<td>60</td>
</tr>
<tr>
<td>3.2 ocelové skeletony s výplňovým zdvitem</td>
<td>70</td>
</tr>
<tr>
<td>4. Vícepodlažní budovy s nosnými stěnami</td>
<td></td>
</tr>
<tr>
<td>4.1 zděné z cihel a bloků se ztužujícími věnci</td>
<td>80</td>
</tr>
<tr>
<td>4.2 z velkorozměrových panelů a monolitického betonu</td>
<td>60</td>
</tr>
</tbody>
</table>
2.1.1.2 Hloubka založení

- je určena především promrzáním zeminy:
 - u definitivních staveb založených na zeminách pod zámrznou hloubkou 0,8 až 1,2 m (dle místa stavby);
 - u jemnozrných zemin (soudržných) je třeba zpravidla volit hloubku větší minimálně 1,0 m;
 - v případech vysoké hladiny podzemní vody (výše než 2,0 m pod povrchem) se volí hloubka založení větší až 1,2 m;
 - u jemnozrnných (F6, F7) mohou-li vysychat minimálně 1,6 m;
 - u vnitřních základů lze hloubku založení zmenšit až na 0,5 m.

- Základní opatření proti promrzání základové spáry:
 - založení v nezámrzné hloubce;
 - ochrana tepelně-izolační vrstvou;
 - odvodnění základové spáry (drenáž);
 - výměna namrzavých zemin za nenamrzavé.

- Hloubku založení mohou ovlivňovat také sousední základy:
 - základové spáry sousedních budov se nesmějí ovlivňovat (přítížení nižšího základu výše položeným základem);
 - úhel spojnice základů je roven úhlu vnitřního tření pro soudržné zeminy je max. 45°;
 - rozměr stupňů cca 500/500 mm.

- Při nevhodném návrhu základů může dojít nejen k prodražení základové konstrukce, ale také k:
 - nestejnoměrnému sedání stavby;
 - deformacím objektu;
 - tvorbě prasklin (trhlin);
 - zřícení objektu.

Výškové uspořádání sousedních základů.

Změna výškové úrovni základového pasu:
stupňování; sklonitý přechod (náběh).

Při nevhodném návrhu základů může dojít nejen k prodražení základové konstrukce, ale také k: nestejnoměrnému sedání stavby; deformacím objektu; tvorbě prasklin (trhlin); zřícení objektu.
Základové pasa

- tvoří souvislý nosník obvykle obdélníkového průřezu;
- využití především jako základy pro:
 - nosné stěny (popřípadě příčky);
 - skelety při velkém zatížení sloupů (když patky vychází veliké);
 - skelety při nerovnoměrném zatížení sloupů.

Materiál:
- prostý beton;
- železobeton;
- lomový kámen (rekonstrukce).

Technologie:
- monolitická – převažuje;
- prefabrikovaná.

Určení rozměrů:
- šířka – se určuje podle zatížení stavbou a vlastností základové zeminy (výpočet);
- výška je ovlivněna:
 - velikostí převislé části pasu (aby nedošlo ke zlomení nebo usmýknutí vlivem zatížení zeminou), pro návrh výšky - roznášecí úhel α (u prostého betonu je přibližně 60°, u lomového kamene 60°–70°, pro železobeton 30°–35°;
 - nezámrznu hloubkou;
 - minimální výškou pasu (500 mm).

Podle tvaru rozlišujeme základové pasa:
- jednostupňové – pasy o menší výšce;
- vícestupňové (obvykle dvou) – pasy větších výšek;
- pasa tvaru obráceného T – pro pasa velkých výšek složené z pasu a žebra (železobeton);
- železobetonové pasa mohou mít rovněž horní hranu zešikmenou.

Tvary základových pasů:
- a) jednostupňový – prostý beton, b) dvoustupňový – prostý beton, c) obrácený T průřez – železobeton, d) jednostupňový – železobeton.
2.1.1.3 Pasy z prostého betonu

- pasy s výškou menší než 1 m realizujeme jako jednostupňové;
- pasy s výškou větší než dvojnásobek šířky navrhujeme jako vícestupňové;
- přímo do výkopu, případně do bednění (základ nad úrovni výkopu – často ztracené bednění).

2.1.1.4 Pasy železobetonové monolitické

- realizujeme pro velká zatížení a méně únosné zeminy (vychází velká šířka pasu, nechceme-li dělat pasy vysoké, musíme je vyztužit) a pro skeletové konstrukce (nestejné zatížení v jednotlivých částech pasu);
- do předem připraveného bednění, na podklad z betonové mazaniny o tloušťce cca 50–150 mm.

2.1.1.5 Prefabrikované pasy

- z prefabrikovaných dílců (bloků);
- pro stěnové systémy;
- bloky uloženy na podkladní beton, nebo do štěrkového lože (100–150 mm).
2.1.2 Základové patky

- podporují stavbu bodově;
- pod skeletové konstrukce (sloupy vyvozují bodová zatížení základů);
- v málo stlačitelné půdě o dostatečně stejnoměrné únosnosti (stejnoměrné sedání stavby);
- materiál:
 - prostý beton;
 - železobeton.
- Technologie:
 - monolitická;
 - prefabrikovaná.
- Rozměry (jako u pasů):
 - šířka – zatížení × únosnost zeminy (statický výpočet);
 - výška – nezámrzná hloubka.
- Rozdělení podle tvaru:
 - čtvercový, obdélníkový nebo kruhový půdorys;
 - jednostupňová, dvoustupňová a vícestupňová, lze vytvářet i lichoběžníkový tvar.

2.1.2.1 Patky z prostého betonu

- pro menší půdorysné rozměry (do cca 2 × 2 m) a pro centrické zatížení;
- výška patky dle roznášecího úhlu - tg α = 1,5–2,0;
- pro patky výšky do 1 m patka jednostupňová;
- pro patky vyšší dvoustupňová (druhý stupeň často železobeton).
2.1.2.2 Prefabrikované patky
- obvykle u montovaných skeletových konstrukcí, vždy vyztužené;
- rozměry jako patky železobetonové monolitické;
- osazujeme na prefabrikované podkladní dílce nebo na monolitickou roznášecí desku tloušťky 100–150 mm;
- vyrábějí se jako patka plná nebo kalichová.

2.1.2.3 Patky železobetonové monolitické
- pro větší půdorysné rozměry (do cca 3 × 3 m – pak raději jiný typ základu);
- pro excentrické zatížení;
- výška patky dle roznášecího úhlu \(\tan \alpha = 0,5–1,0 \);
- realizují se na vrstvu podkladního betonu tloušťky 100–150 mm.
2.1.2.4 Základové prahy

- používáme pro založení obvodových konstrukcí, dělících, požárních a schodišťových stěn ve sloupech systému založených na patkách;
- pod základovým prahem musí být realizována poddajná, stlačitelná vrstva (násyp), která umožňuje deformaci (konstrukce sedá společně s patkami).

2.1.3 Základové rošty

- jsou soustavy navzájem kolmých základových pasů;
- především pro skeletové konstrukce na nestejnoměrně stlačitelných zemích, nebo místo velkých patek;
- železobetonové, tvarově jednoduché, nebo obrácený T průřez;
- výhodou je prostorová tuhost celé konstrukce (lepší vyrovnání nerovnosti při sedání celého objektu).

2.1.4 Tenké základové desky

- jsou desky tloušťky cca 300 mm;
- realizují se především pro nízkopodlažní (do tří podlaží) nepodsklepené objekty;
- na štěrku vzhledem k polštářní tloušťce, cca 300 mm;
- v současnosti využívají při zakládání nízkoenergetických a pasivních objektů – vrstva štěrku nahrazena vrstvou tloušťky cca 500 mm → tepelná izolace obaluje celý dům;
- další materiálové možnosti – desky z extrudovaného polystyrenu, z polyuretanu.
2.1.5 Základové desky

- železobetonová deska je realizována pod celým půdorysem stavby;
- používají se především:
 - v nehomogenní základové půdě;
 - na málo únosných základových půdách;
 - pro výškově a hodně zatížené stavby;
 - při zakládání pod úrovní spodní vody.
- Pro stěnové i skeletové konstrukce.

2.1.5.1 Rovné desky

- tloušťka 500–1200 mm.

2.1.5.2 Žebrové desky

- kombinace železobetonových desek a trámů;
- použití především u skeletů při větší hloubce traktů (větší zatížení na prahy → větší sedání než deska);
- realizují se s deskou:
 - nad žebry;
 - pod žebry.

2.1.5.3 Hřibové desky

- v místech sloupů desky zesílené hřibovými hlavicemi, které (stejně jako u stropů) pomáhají přenášet zatížení.

2.1.5.4 Základové vany

- pro spodní stavbu podsklepených objektů;
- kombinace základové desky se suterénními stěnami ze železobetonu (konstrukce spolupůsobí – tvoří jeden statický celek);
- podle způsobu ochrany spodní stavby rozeznáváme:
 - Černé vany – použití povlakových hydroizolací;
 - Bílé vany – použití vodonepropustného betonu.
2.1.6 Detaily plošných základů

2.1.6.1 Základ nad terénem – sokl
Od soklu požadujeme především:
- dostatečnou pevnost;
- odolnost proti působení vody (vzlínající i odstřikující), hydroizolace vytažena minimálně 300 mm nad terén;
- osazený okapní lišty proti stékající vodě;
- okapový chodniček (odvádění dešťové vody) → spád od objektu;
- odolnost proti působení mrazu;
- odolnost proti agresivnímu prostředí rozpuštěných solí;
- možnost mechanického čištění;
- tepelněizolační schopnosti:
 - zateplení soklu;
 - zateplení základu – minimální hloubka 1 m;
 - u nízkoenergetických domů podkladní tvarovka z tepelněizolačního materiálu (pozor na pevnost v tlaku – pěnové sklo).

![Diagram soklu](image1)

Sokl – schéma.

![Zateplení soklu](image2)

Zateplení soklu nenasákavou izolací. [029]

2.1.6.2 Prostup základovým pasem
- před betonáží neopomenout osadit průchodky pro TZB (kanalizaci, vodu apod.).

![Prostup základy](image3)

Prostup základy.

2.1.6.3 Ostatní úpravy plošných základů

![Úprava výšky základu](image4)

Úprava výšky základu. [030]

![Uložení zemního pásu před betonáží základů](image5)

Uložení zemního pásu před betonáži základů. [031]
2.2 Hlubinné základy

- přenášejí zatížení ze stavby pomocí základového překladu (prahu) do sloupů (pilot, studní, kesonů), které jsou opřeny (vetknuty) do únosné zeminy.
- Používají se:
 - v obtížných geologických podmínkách, při nedostatečné únosnosti povrchových vrstev základové půdy;
 - když by byla tvorba plošných základů neekonomická nebo nemožná (únosná půda je ve větší hloubce – obvykle více než 4 m).
- Jestliže se nachází únosná zemina ve velké hloubce, realizují se tzv. piloty plovoucí (přenášejí zatížení třením → nesmí mít hladký povrch).

2.2.1 Piloty

- tyčové prvky nejčastěji kruhového průřezu, minimální délky 2 m.

2.2.1.1 Dle přenášení zatížení

- piloty tlakové:
 - **Opřené** – přenášejí zatížení přímo do únosné vrstvy, opírají se o špičku o únosnou vrstvu (obvykle skalní);
 - **Vetknuté** – přenášejí zatížení od-porem špičky i třením pláště o zeminu, jsou nejčastěji používané;
 - **Plovoucí** – nezasahují do únosné vrstvy, přenášejí zatížení pouze třením pláště o zeminu.
- piloty tahové;
- piloty namáhané ohybem.

2.2.1.2 Podle spolupůsobení

- piloty osamělé – piloty se vzájemně staticky neovlivňují, osová vzdálenost b > 6d (d – průměr pilota);
- piloty skupinové – piloty se vzájemně staticky ovlivňují a posuzují se jako celek.

Osová vzdálenost skupinových pilot

- je závislá na statickém působení pilot, jejich rozměru a technologii provádění;
- pro maloprůměrové vháněné piloty:
 - opřené b ≥ 2,5d;
 - plovoucí b ≥ 3,5d.
- Pro maloprůměrové vrtané piloty:
 - opřené b ≥ 3,5d;
 - plovoucí b ≥ 4,5d.
- Pro velkopůlůměrové piloty b ≥ 1,5d.

![Základový překlad](image)

Typy pilot – vetknutá, plovoucí.

![Plovoucí pilota](image)

![Opřené piloty](image)

![Tahové piloty](image)

![Rozmístění pilot](image)
2.2.1.3 Podle velikosti
- mikropiloty – \(d < 0,20 \text{ m} \);
- maloprůměrové – \(d = 0,20 \text{ m až 0,60 m} \);
- velkoprůměrové – \(d > 0,60 \text{ m} \).

2.2.1.4 Podle technologie a materiálu

A. Beraněné
- beranění se provádí pomocí beranidla (předepsána je hmotnost beranidla, energie úderu a pokles piloty při údaru);
- piloty beraněné jsou realizovány ze:

Dřeva:
- smrkového, jedlového, dubového o průměru 0,2–0,4 m, v délkách 3–20 m;
- mají okovanou hlavu a špička piloty bývá opatřena „ocelovou botkou“;
- dnes spíše pro dočasné stavby;
- piloty musí být trvale pod hladinou vody.

Ocelové:
- jako širokopřírubové, tvaru I nebo jako duté piloty trubní;
- nutná ochrana proti korozii;
- používají se do větších hloubek (snadněji vlahání);
- dobře se dá upravovat jejich délka.

Prefabrikované, železobetonové:
- pro hloubky 20–60 m;
- vyrábí se v plném průřezu (čtvercový tvar se zkosenými hranami – 250 × 250 mm – 600 × 600 mm), nebo duté;
- obvykle vyztuženy jako sloupy s pozdobnou výztuží a třmínky nebo ovinutou výztuží;
- špička piloty chráněna ocelovým hrotem, v hlavě piloty zhuštěné třmínky (nebo ovinutí).
B. Monolitické
- jako betonové (při namáhání tlakem), nebo častěji jako železobetonové (namáhání tahem nebo ohybem);
- mohou být realizovány jako:

1. Piloty hloubené bez výpažnice
- v zeminách soudržných a nad hladinou podzemní vody – bez zajištění;
- jinak **piloto betonované pod bentonitovou suspenzí.**

Pracovní postup:
- hloubení vrtu pod bentonitovou suspenzí (bentonit čerpáme do hloubené šachty);
- vložení výztuže (armokoše), betonáž piloty → bentonit vytéká.

2. Piloty s výpažnicí
- ve všech druzích základové půdy i pod hladinou podzemní vody;
- výpažnice – ocelová trouba – se do zeminy vhání beráním, zavrtáváním, vibrací nebo může být vkládána přímo při vrtání.

Pracovní postup:
- vibrování (beráním) výpažnice, těžení zeminy (vrtání), vložení výztuže (armokoše), betonáž piloty, vytážení výpažnice (zpětnou vibrací).
3. Piloty s betonáží v ose vrtáku

- tento postup nepotřebuje zajištění hloubené piloty.

Pracovní postup:

- vrtání piloty průběžným šnekem (šnek se do země pouze „zavrtá“), betonáž piloty osou šneku (za současného vytahování šneku), vtlácování výztuže (armokoše).

4. Mikropiloty

- malý průměr – 100–250 mm, možnost vrtat šikmo;
- výhodné pro stabilizaci stávajících konstrukcí (podchycování základů).

Pracovní postup:

- vrtání;
- výplňová zálivka;
- výztuž – silnostěnné trubky v dolní části perforované;
- injektáž kořene mikropiloty (tlakově cementovou směsí);
- napojení konstrukce – roznášecí hlava.
2.2.2 Studně a šachtové pilíře

- těžba zeminy probíhá pod ochranou pláště (obvykle betonové skruže opatřené ve spodní části štěrkem), při odebírání zeminy jednotlivé skruže vlastní tihou klesají, po dosažení potřebné hloubky je vnitřní prostor vyplněn betonem nebo štěrkem;
- pro hloubky založení 10–30 m;
- při zakládání ve zvodnělých zeminách a pod hladinou podzemní vody;
- výhodou především jednoduchost prací a malé nároky na techniku;
- dnes se spíše realizují velkopříměrové pilóny d > 600 mm.

2.2.3 Kesony

- historická konstrukce pro zakládání mostů – Čechův most, Brooklynský most apod.;
- jedná se o velkoplošné studně uzavřené strozem, který vytváří pracovní komoru zabezpečenou proti vnikání vody přetlakem vzduchu;
- keson vlastní tihou klesá na únosné dno.

Vzdušnice – ocelový kotel se dvěma vzduchotěsnými dvířky spojený komunikační šachtou s kesonem – zajišťuje pohyb pracovníků a materiálu do kesonu a ven.
2.3 Zemní vruty

- systémy pro zakládání lehkých staveb (dřevostavby);
- výhodou jsou především menší nároky na mechanizaci a rychlost realizace, nevýhodou může být nezkušenost realizačních firem a různá kvalita zemních vrutů.

3. Zvyšování kvality podloží

- základové půdy se zpevňují za účelem:
 - zvýšení pevnosti zeminy;
 - zmenšení deformace – menší sedání stavby;
 - zmenšení propustnosti zeminy.

A. Odvodněním stávajícího podloží

- předpokládá trvalé snížení hladiny podzemní vody;
- drenážováním podél základové konstrukce (drenáže pod základovou spárou);
- trvalým odčerpáváním (nákladnější).

B. Mechanickým zhutněním podloží

- vhodné u málo ulehlých zemin (hlinité, hlinitopísčité a písčité), provádí se pomocí vibračních desek, válců a pěchů.

C. Injektáží

- do základové půdy se pod tlakem vhání injektážní látky:
 - jílové injekce (bentonit) - těsnění zeminy proti průsaku;
 - cementojílové injekce - zpevňují a zároveň utěšňují zeminu;
 - chemické injekce - pro zpevňování jemných písků - v pórech zeminy se vytvoří nepropustná vrstva - ucpe póry, stmelí zrna;
 - vodní sklo, chlorid vápenatý - jíly, štěrkopísky, písky;
 - cement - hrubozrnné štěrky.

D. Výměnou neúnosné vrstvy

- odstraněním a nahrazením neúnosné vrstvy stabilizovaným podložím - zhutněným pískem nebo zhutněnou zeminou;
- zlepšenou zeminou (např. odstraněnou zeminu promísíme s cementem, zvlhčíme, uložíme zpátky a zhutníme).
4. Zdroje

4.1 Použitá literatura
4.2 WWW – výukové materiály
4.3 Normy

Vydání této knihy podpořili:
Umění spolupráce

Základy stavitelství v kostce
Ing. Tomáš Karlík
Ing. Marek Novotný, Ph.D., soudní znalec
Vydal: A.W.A.L. s.r.o. Eliášova 20, 160 00 Praha 6
Jazyková korektura textu: Kateřina Zelená
Propagace, marketing: autoři, Ing. Josef Remeš, Kateřina Zelená
Administrativní podpora: Kateřina Zelená
Počet stran: 40
Nulté vydání, Praha 2018
ISBN: 978-80-905755-3-0

Názvy produktů, firem apod. použité v knize mohou být ochrannými známkami nebo registrovanými ochrannými známkami příslušných vlastníků.
Publikace je určena nejširšímu okruhu zájemců, pracovníkům ve stavebnictví a především studentům a pedagogům středních a vysokých škol technického zaměření s orientací na stavebnictví.